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Executive summary 

Marsden Jacob Associates has been engaged to review Icon Water’s demand 

forecasting methodology in preparation for the Independent Competition and 

Regulatory Commission’s 2023 price review.  

Our advice to the ICRC covers three stages, with objectives set out below. 

Stage 1 

In Stage 1, the ICRC asked us to advise on whether the current Auto-Regressive Integrated Moving 

Average (ARIMA) approach to forecasting water demand is appropriate and fit for purpose, 

considering other approaches that could be used. The ICRC also asked us to advise on whether there 

would be significant benefits from moving to an alternative forecasting approach.  

Our Stage 1 advice supported the use of the ARIMA model and is available on the ICRC website here.    

Stage 2  

In the second stage, the ICRC asked us to advise on how to best implement the forecasting approach that 

the ICRC chooses, following our Stage 1 advice. In this stage we recommended key changes in the 

proposed specification compared to the current approach: the lower time frequency of the data, and the 

inclusion of additional weather variables to improve forecasting accuracy. In addition, we made two 

further key recommendations on how to compute forecasts of water installations based on ACT population 

projections, and to use NARCLiM data to project future climate scenarios. Our advice is available on the 

ICRC website here. 

Stage 3 

This report is our final deliverable for Stage 3. The document outlines our process for undertaking 
optimal model selection, including the specification of the weather variables, their lags, as well as 
lags of the dependent variable and of the error term of the model, which are commonly used in 
ARIMA models. Moreover, the report provides the optimal model results and also outlines how to 
use the ARIMAX model to forecast dam abstractions, including: 

• how to forecast explanatory variables for use as inputs in the forecasting model (e.g. how to develop 

future climate scenarios using NARCLiM data, how to forecast water installation numbers) 

• provide the results of those forecast inputs 

• describe the data used in the model 

• how to develop annual dam abstraction forecasts. 

 

https://www.icrc.act.gov.au/__data/assets/pdf_file/0011/1767485/Issues-Paper.pdf
https://www.icrc.act.gov.au/__data/assets/pdf_file/0005/1855886/Draft-Report-Water-and-sewerage-services-demand-forecasting-methods.pdf
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Section 2.1 of this report outlines the final model specification and the final statistical form of the 

model. The variables for the optimal weekly form of the model are described in Table 1 along with 

data sources. Section 2.2 and Appendix 1 includes detailed results and estimated parameters for 

models with daily, weekly and monthly data, respectively. The estimation results for the weekly data 

model show good statistical properties compared to the existing daily data model: estimated 

coefficients have signs that are consistent with expectations; moreover, the new variables, which 

capture the effect of extreme weather conditions, improve the fit of the model. This is consistent 

with our findings from our stage 2 assessment. 

Table 1: Variables used for optimal weekly data model 

Variable Description  Reasoning Coefficient estimate  Data Source  

Dam 

abstractions 

Dam 

abstractions 

during a 

previous week 

Dam 

abstractions are 

related over 

time.  This is a 

function of the 

ARIMA model 

and is 

calculated using 

the model. 

0.78 

Data shows dam abstractions are 

positively related over time. 

Provided by 

Icon Water 

Temp Average of 

daily maximum 

temperatures 

(degrees 

Celsius) during 

a week 

Hot periods will 

result in more 

water 

abstractions to 

meet increasing 

water demand 

by customers 

Linear component: 1.82 to 6.51  

Squared: 0.04 

These estimates show hot periods 

increase dam abstractions. 

Bureau of 

Meteorology 

for the 

Canberra 

Airport 

station. 

rain Average daily 

rainfall (mm) 

during a week 

Rainy periods 

will result in less 

water 

abstractions 

because part of 

customer’s 

water demand 

will be met by 

rain (e.g. less 

water required 

for plants 

during rainy 

periods) 

Linear component: -3.79 to 11.15  

Square root: -43.44 to -12.86 

These estimated parameters 

combined show a negative 

relationship between total 

abstractions and rainfall. 
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Variable Description  Reasoning Coefficient estimate  Data Source  

Evap Average daily 

evaporation 

during a week 

High 

evaporation 

rates will result 

in more water 

abstractions to 

meet higher 

irrigation 

requirements 

for 

plants/gardens 

as they dry. 

Linear component: 31.03 to 46.38 

  

These estimates combined show a 

positive relationship between total 

abstractions and evaporation  

 

 

Bureau of 

Meteorology 

for the 

Burrinjuck 

Dam station 

Customer Icon water 

customer 

connections at 

the end of a 

week 

More customers 

will increase 

water demand, 

and will require 

more water 

abstractions 

0.003 

This estimate shows that increase in 

customers are related to more water 

abstractions. The effect is 

statistically significant. 

Provided by 

Icon Water 

Cumx This variable 
includes the 
cumulative sum 
(over the week) 
of rain * 
evaporation. 

High levels of 

rainfall and low 

levels of 

evaporation is 

likely to be 

related to lower 

demand for 

water 

-0.06 

This variable has a negative 

relationship with dam abstractions 

and is highly significant. 

Evaporation 

and rain data  

Binary 

variables – 

Summer and 

December 

Included as binary variables, which 

equal the value of 1 if time period 

t belongs to summer (December 

to February) and December, 

respectively, and zero otherwise. 

-15.62 – December 

16.98 – Summer 

These variables were not statistically 

significant. 

Time periods 

Additional 

weather 

variables to 

capture the 

effect of 

extreme 

weather 

conditions on 

dam 

abstractions 

• Number of 
days where 
daily 
temperature 
exceeded 30 
°C or 35 °C in 
a week 

More days with 

extreme high 

temperature 

will result in 

more dam 

abstractions. 

10.91 to 28.89 

These estimates show extreme hot 

periods increase dam abstractions. 

Bureau of 

Meteorology 

for the 

Canberra 

Airport 

station and 

Bureau of 

Meteorology 

for the 

Burrinjuck 

Dam station 

• Number of 
days in a 
week where 
rain is greater 
than 1 mm 

More days with 

plenty of rain 

will result in less 

dam 

abstractions. 

-14.89 

This estimate shows that wet 

periods are related to lower dam 

abstractions.  
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Variable Description  Reasoning Coefficient estimate  Data Source  

𝐬𝐢𝐧 Sine and cosine 

functions.  

These are 

included to 

account for 

seasonality 

(systematic, 

repetitive, 

periodic 

fluctuations in 

dam 

abstractions 

over the course 

of a week) 

-21.27 

The magnitude of this coefficient 

shows the amplitude of variation, 

i.e. the maximum horizontal 

distance from the wave’s centre to 

the peak. That is, in the present case 

the sine varies between -19.76 and 

19.76. 

Self-defined 

𝐜𝐨𝐬𝐢𝐧 -102.67  

See above, mutatis mutandis. 

Moving 

average 

component 

Forecast error 

of dam 

abstractions 

for the 

previous week 

(weeks) 

This is a 

function of the 

ARIMA model 

and is 

calculated using 

the model. 

-0.34  

This parameter enters the 

autocorrelation function of the 

dependent variable. In the absence 

of autoregressive components in the 

ARIMA specification, the value of -

0.34 implies that the correlation 

between y and its lagged value 

equals 

−0.34 (1 + (−0.34)2) ≈ −0.30⁄ .    

Self-defined 

Note: coefficient estimate range is based on point estimates for different forms of a variable (squared, square root, lag, no 

lag) and are considered for estimates that are statistically significant with a p-value of at most 0.05 

Steps to ensure model and parameters are statistically sound 

There were several steps we implemented to ensure the model and parameters are statistically 

sound, and to confirm the final model specification. We discuss these in section 2.1 of this report, 

with detailed results included in Appendix 1. These steps mainly deal with technical approaches that 

we used for determining best model fit. 

Implementation of model changes 

We have outlined steps for implementing model changes to produce dam abstraction forecasts in 

section Error! Reference source not found. of this report. This section details how the optimal 

ARIMAX model should be implemented including the steps for developing in- and out-of-sample 

forecasts, and how to forecast future weather conditions using the NARCLiM database, a multi-

agency research project between the NSW and ACT governments and the Climate Change Research 

Centre at the University of NSW. 
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1. Introduction 

Marsden Jacob Associates has been engaged to review Icon Water’s demand 

forecasting methodology in preparation for the Independent Competition and 

Regulatory Commission’s 2023 price review. 

The ICRC decided in its 2018 determination for water and sewerage services prices for Icon Water to 

review its demand forecasting model before the next price investigation.  

The ICRC 2018 regulatory determination noted that the Auto-Regressive Integrated Moving Average 

(ARIMA) model for demand forecasting did not fully account for climate, demographic changes and 

projections. ICRC identified these issues as potential weaknesses in the forecasting model. 

The ICRC determination also noted that the medium-term demand forecasts were highly sensitive to 

minor updates to the data used in the model. The ICRC has noted that this may reflect the weighting 

of recent observations and absence of leading indicators in the model. This has also been identified 

as a potential weakness in the forecasting model. 

The ICRC review is being undertaken in consultation with key stakeholders. As part of this, ICRC 

released an issues paper in May 2021, held a workshop and sought submissions during June and July. 

ICRC has consulted with stakeholders through submissions and workshops following release of the 

draft report (Figure 1). The final model specification in this report will be used to produce forecasts 

for the next water and sewerage services price investigation to commence in July 2023. 

Figure 1: ICRC review approach  

 

1.1 Objectives  

The ICRC engaged Marsden Jacob as technical advisors on the demand forecasting review. Our 

support to ICRC covers three stages, with objectives set out below. 

Stage 1 

In Stage 1, the ICRC asked us to advise on whether the current ARIMA approach to forecasting water 

demand is appropriate and fit for purpose, considering other approaches that could be used. The 

ICRC also asked us to advise on whether there would be significant benefits from moving to an 

alternative forecasting approach.  
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Our Stage 1 advice supported the use of the ARIMA model and is available on the ICRC website here.    

Stage 2  

In the second stage, we advised on how to best implement the forecasting approach that the ICRC 

chooses, following our Stage 1 advice. Our advice addresses matters including: 

• the general model specification, including dependent and explanatory variables and functional form 

• how to ensure the model can appropriately account for changes in climate and demographics (e.g. 

population projections) 

• any steps needed to ensure the model and parameters are statistically sound (e.g. parameters are 

stationary and structural breaks in time series are dealt with appropriately) 

• how recommended changes should be made/implemented, including advising on the data sources and 

any adjustments that would be needed (e.g. adjustments to make data stationary). 

In this stage we recommended two key changes in the proposed specification compared to the current 

approach: the lower time frequency of the data, and the inclusion of additional weather variables to 

improve forecasting accuracy. In addition, we made two further key recommendations on how to compute 

forecasts of water installations based on ACT population projections, and the use of the NARCLiM dataset 

to project future climate scenarios. Our advice is available on the ICRC website here. 

Stage 3 

This report is our final deliverable for Stage 3. This report outlines our process for undertaking the final 

model specification and provides the optimal model results.  

In this report we outline the final statistical form of the variables, that is, whether to use squared 

values, square root values, and how many ‘lags’ to use, which are commonly used in ARIMA models 

where it is assumed that the forecast value of a variable is dependent upon past observations of that 

variable. 

Our report also outlines how to use the ARIMAX model to forecast dam abstractions, including: 

• how to forecast explanatory variables for use as inputs in the forecasting model (e.g. how to develop 

future climate scenarios using NARCLiM data, how to forecast water installation numbers),  

•  provide the results of those forecast inputs 

•  describe the data used in the model 

•  how to develop annual forecasts using the optimal model based on weekly data. 

https://www.icrc.act.gov.au/__data/assets/pdf_file/0011/1767485/Issues-Paper.pdf
https://www.icrc.act.gov.au/__data/assets/pdf_file/0005/1855886/Draft-Report-Water-and-sewerage-services-demand-forecasting-methods.pdf
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2. Model specification  

This chapter outlines our approach to model selection and the final model specification results. 

Building upon the current model specification1, we specify the following ARIMAX model of general 

form:  

𝑦𝑡 = ∑ ∑ 𝛽𝑘,𝜏

𝑝1

𝜏=0

(𝑡𝑒𝑚𝑝𝑡−𝜏)𝑘/2

𝑘∈{1,2,4}

+ ∑ ∑ 𝛾𝑘,𝜏

𝑝2

𝜏=0

(𝑟𝑎𝑖𝑛𝑡−𝜏)𝑘/2

𝑘∈{1,2,4}

+ ∑ ∑ 𝛿𝑘,𝜏

𝑝3

𝜏=0

(𝑒𝑣𝑎𝑝𝑡−𝜏)𝑘/2

𝑘∈{1,2,4}

 

 

+𝜆(𝑒𝑣𝑎𝑝𝑡 × 𝑟𝑎𝑖𝑛𝑡) + 𝜇1𝑠𝑢𝑚𝑚𝑒𝑟𝑡 + 𝜇2𝑑𝑒𝑐𝑒𝑚𝑏𝑒𝑟𝑡 + 𝜉 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑡 + 𝝓′𝒘𝑡 

 

+𝐹𝑡(𝝆) + ∑ 𝛼𝜏
𝑝
𝜏=1 𝑦𝑡−𝜏 + 𝜀𝑡 + ∑ 𝜃𝜏

𝑞
𝜏=1 𝜀𝑡−𝜏,   𝑡 = 1, … , 𝑇,                                  (1) 

 

where 𝑡 is the time series index that denotes a week or a month, depending on the time frequency of 

the data, 𝑦𝑡  denotes the observation of the dependent variable at time period 𝑡, i.e. the 

weekly/monthly bulk volume of dam water abstractions; 𝑡𝑒𝑚𝑝𝑡−𝜏 (𝑟𝑎𝑖𝑛𝑡−𝜏) [𝑒𝑣𝑎𝑝𝑡−𝜏] denotes the 

average value of daily maximum-temperature (rainfall) [evaporation] at time period 𝑡 − 𝜏; 𝑠𝑢𝑚𝑚𝑒𝑟𝑡 

and 𝑑𝑒𝑐𝑒𝑚𝑏𝑒𝑟𝑡 denote binary variables that take the value of 1 if time period 𝑡 belongs to summer 

(December to February) and December, respectively, and zero otherwise;2 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑡 denotes the 

number of customers at time period 𝑡; 𝜀𝑡−𝜏 is the unobserved error term of the model, which is 

assumed to be white noise with mean zero.  

In addition, 𝒘𝑡 = (𝑤1𝑡, 𝑤2𝑡, … , 𝑤𝐾𝑡) denotes a 𝐾𝑤 × 1 vector of additional weather variables, with 

𝐾𝑤 = 10, which is defined as follows: 

• 𝑤1𝑡 ≡ number of days where daily temperature exceeded 30 °C during the previous week/month 

(temp_g30);  

• 𝑤2𝑡 ≡ number of days where daily temperature exceeded 35 °C during the previous week/month 

(temp_g35);  

• 𝑤3𝑡 ≡ number of days where daily temperature exceeded 40 °C during the previous week/month 

(temp_g40);  

• 𝑤4𝑡 ≡ number of consecutive days where daily temperature exceeded 30 °C during the previous 

week/month (temp_g30cons);  

• 𝑤5𝑡 ≡ number of consecutive days where daily temperature exceeded 35 °C during the previous 

— 
1 Icon Water, 2018-23 Price Proposal Attachment 4 - Demand Forecasts 
2 To be more specific, we have used the first day of each time period 𝑡 in order to classify whether an observation 

belongs to summer and\or December. 
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week/month (temp_g35cons);  

• 𝑤6𝑡 ≡ number of consecutive days where daily temperature exceeded 40 °C during the previous 

week/month (temp_g40cons);  

• 𝑤7𝑡 ≡ number of days without rain during the previous week/month (nudaysnorain);  

• 𝑤8𝑡 ≡ number of consecutive days without rain during the previous week/month (nuconsdaysnorain);  

• 𝑤9𝑡 ≡ number of days where rain exceeded 1 mm during the previous week/month 

(nudaysgeq1mm);  

• 𝑤10𝑡 ≡ number of days where rain exceeded 2 mm during the previous week/month 

(nudaysgeq1mm).  

 

Finally, the Fourier terms are computed based on the following formula: 

𝐹𝑡(𝝆) = ∑ [𝜌1,𝑗𝑠𝑖𝑛 (
2𝜋𝑗𝑡

𝑛
) + 𝜌2,𝑗𝑐𝑜𝑠 (

2𝜋𝑗𝑡

𝑛
)]

𝐽
𝑗=1 ,                                           (2) 

where 𝝆 = (𝜌1,1, … , 𝜌1,𝐽, 𝜌2,1, … 𝜌2,𝐽)′ and 𝑛 ∈ {52,12}, depending on whether the time frequency of 

the data is weekly or monthly, respectively. 

Table 2 provides a description of the model variables that were considered for the Box-Jenkins 

process, along with the data sources. 

Table 2: Description of the model variables and data sources 

Variable Description  Reasoning Data Source  

𝒚𝒕, Dam 

abstractions 

Dam abstractions 

during a previous 

week/month 

Dam abstractions are related over 

time.  This is a function of the ARIMA 

model and is calculated using the 

model. 

Provided by Icon 

Water 

𝐭𝐞𝐦𝐩 Average of daily 

maximum 

temperatures (degrees 

Celsius) during a 

week/month 

Hot periods will result in more water 

abstractions to meet increasing water 

demand by customers 

Bureau of 

Meteorology for the 

Canberra Airport 

station. 

𝐫𝐚𝐢𝐧 Average daily rainfall 

(mm) during a 

week/month 

Rainy periods will result in less water 

abstractions because part of 

customer’s water demand will be met 

by rain (e.g. less water required for 

plants during rainy periods) 

𝐞𝐯𝐚𝐩 Average daily 

evaporation during a 

week/month 

High evaporation rates will result in 

more water abstractions to meet 

higher irrigation requirements for 

plants/gardens as they dry. 

Bureau of 

Meteorology for the 

Burrinjuck Dam station 
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Variable Description  Reasoning Data Source  

cumx Cumulative interaction 

effect between 

rain*evap 

High levels of evaporation and low 

levels of rainfall is likely to be related 

to higher demand for water 

 

𝐜𝐮𝐬𝐭𝐨𝐦𝐞𝐫 Icon water customer 

connections at the end 

of a week/month 

More customers will increase water 

demand, and will require more water 

abstractions 

Provided by Icon 

Water 

𝒘𝒕,  Additional 

weather 

variables to 

capture the 

effect of 

extreme 

weather 

conditions on 

dam 

abstractions 

• Number of days 
where daily 
temperature 
exceeded 30 °C,  35 °C  
or 40 °C in a 
week/month 

More days with extreme high 

temperature will result in more dam 

abstractions. 

Bureau of 

Meteorology for the 

Canberra Airport 

station and Bureau of 

Meteorology for the 

Burrinjuck Dam station 
• Number of days 

without rain in a 
week/month 

More days without rain will result in 

more dam abstractions. 

• Number of days 
where rain exceeded 
1 and 2mm in a 
week/month 

More days with high rainfall will result 

in less dam abstractions. 

𝐬𝐢𝐧 Sine and cosine 

functions.  

These are included to account for 

seasonality (systematic, repetitive, 

periodic fluctuations in dam 

abstractions over the course of a 

week)3 

Self-defined 

𝐜𝐨𝐬𝐢𝐧 

Moving 

average 

component 

Forecast error of dam 

abstractions for the 

previous week/month 

(weeks/months) 

This is a function of the ARIMA model 

and is calculated using the model. 

Self-defined 

 

 

2.1 Model selection  

Our approach to model selection is based on the Box-Jenkins methodology.  

Specifically, to begin with, we tested for a unit root in 𝑦𝑡 ≡ 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑠𝑡, using a Dickey-Fuller test. 

Since the null hypothesis of a unit root was soundly rejected using the 1% level of significance, there 

was no need to apply differencing in the series 𝑦𝑡 to make it stationary. In other words, since the 

— 
3 An alternative way of modelling seasonality involves specifying seasonal versions of ARIMA models using seasonal differencing of 

some order. However, this approach is mainly designed for relatively short seasonal periods, e.g. 4 for quarterly data. In 
contrast, weekly data have a seasonal period of 52. As argued by Hyndman and Athanasopoulos (2021) (Section 15.5, 
Forecasting: principles and practice, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3. Accessed on November 29, 
2021), seasonal differencing of such high order does not make a lot of sense and a harmonic regression approach is preferrable. 
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order of integration for 𝑦𝑡 is zero, our starting point is an ARMAX(p,q) specification, which is 

equivalent to an ARIMAX(p,0,q) process.   

Subsequently, we proceeded using three steps, which are summarised below.  

1. Identification of lag order of weather variables. The optimal lag order of the weather variables 

was determined using “best-subset selection”, based on a well-established model information 

criterion, in particular the Bayesian Information Criterion (BIC).4 

2. Estimation and Selection of ARMAX(p,q). This step involved estimation of several ARMAX models 

with different values of 𝑝 and 𝑞. The optimal order of the AR and MA components was determined 

using BIC. 

3. Diagnostic Checking. This step involved checking whether the optimal model is adequate by 

examining the signs and stability of the coefficients, as well as performing tests for normality, unit 

roots and serial correlation on the residuals. 

The approach to model selection for determining the optimal model has been applied on data with 

weekly and monthly frequency. For the last price investigation, Icon Water had applied the Box-

Jenkins methodology to identify the optimal form of the daily data model which is the existing form 

of the ARIMA model. We used the existing daily data model to compare the forecasting performance 

of the models with different data frequency, which is discussed in section 2.2.  

A detailed explanation of each step in the model selection process is provided in the sections below. 

2.1.1 Identification of lag order of the weather variables 

In more compact form, the general form of the model above can be written as follows: 

𝑦𝑡 = 𝒙1𝑡
′ 𝜷1 + 𝒙2𝑡

′ 𝜷2 + ∑ 𝛼𝜏
𝑝0
𝜏=1 𝑦𝑡−𝜏 + 𝜀𝑡 + ∑ 𝜃𝜏

𝑝4
𝜏=1 𝜀𝑡−𝜏,         (3) 

where 𝒙1𝑡 denotes a 𝐾1 × 1 vector that contains all weather variables and their lagged values, 

including 𝒘𝑡, while 𝒙2𝑡 denotes a 𝐾2 × 1 vector that contains all remaining covariates, i.e. 𝑠𝑢𝑚𝑚𝑒𝑟𝑡, 

𝑑𝑒𝑐𝑒𝑚𝑏𝑒𝑟𝑡,  𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑡, a constant, and 𝐹𝑡(𝝆), the Fourier terms.  

Model specification requires one to determine the optimal order of the lags of the right-hand side 

variables. This specification problem is far from trivial because the model is nonlinear and there 

exists a large number of possible combinations of (i) weather variables, (ii) their associated lagged 

values, and (iii) lags of 𝑦𝑡 and 𝜀𝑡, i.e. the values of 𝑝 and 𝑞 (the order of the AR and MA components, 

respectively). This renders the task of optimal model selection difficult. 

For this reason, we put forward a two-stage procedure that can be described as follows. 

— 
4 An alternative would be to use Akaike Information Criterion (AIC). We prefer BIC because there already exists a large 

number of potential explanatory variables (and their associated lags), and thereby the AIC can give rise to a 
largely overparameterized model. We would like to point out that we have also compared the forecasting 
accuracy of the optimal weekly\monthly models, selected using BIC and AIC. For both weekly and monthly data, 
the optimal model selected based on BIC outperformed the optimal model selected based on AIC.  
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In the first stage, we regress 𝑦𝑡 on all right-hand side exogenous variables, leaving the AR and MA 

components to be absorbed by the error term. In other words, we specify the following general 

Distributed Lag (DL) model 

𝑦𝑡 = 𝒙1𝑡
′ 𝜷1 + 𝒙2𝑡

′ 𝜷2 + 𝑢𝑡,             (4) 

where 

𝑢𝑡 = ∑ 𝛼𝜏

𝑝0

𝜏=1
𝑦𝑡−𝜏 + 𝜀𝑡 + ∑ 𝜃𝜏

𝑝4

𝜏=1
𝜀𝑡−𝜏 

denotes the resulting composite error component. 

Since the weather variables are “strictly exogenous” with respect to the purely idiosyncratic error 

component, i.e. 𝐸(𝜀𝑡|𝒙11, … , 𝒙1𝑇 , 𝒙21, … , 𝒙2𝑇) = 0 for 𝑡 = 1, … , 𝑇, we also have 

𝐸(𝑢𝑡|𝒙11, … , 𝒙1𝑇 , 𝒙21, … , 𝒙2𝑇) = 0. Therefore, the least-squares estimates of 𝜷1 and 𝜷2 are unbiased 

and consistent. “Strict exogeneity” means that weather conditions do not get feedback from dam 

releases. That is, changes in the level of dam releases do not cause (say) a given day to be hot, rainy or 

humid (but the reverse can be true). This assumption is natural. 

Subsequently, the optimal lag order of the weather variables is determined based on a procedure 

known as “best-subset selection”, which is common in machine learning literature. To describe this, 

let 𝐾𝑚𝑎𝑥(= 𝐾1 + 𝐾2) denote the maximum possible number of explanatory variables and their lags 

used in the DL model above, and let 𝐾 be the number of regressors used in estimation. Best-subset 

selection involves finding the value of 𝐾 together with the associated combination of regressors 

corresponding to the smallest BIC (Bayesian Information Criterion) value. 

To be more specific, the general DL model is estimated using 𝐾 ∈ {1, 2, 3, … , 𝐾𝑚𝑎𝑥} regressors. For 

each value of 𝐾, all possible combinations of regressors (of size 𝐾) are considered. The best 

combination corresponds to the one minimising the residual sum of squares. Once the optimal 

combination of regressors is determined for each value of 𝐾, the optimal value of 𝐾, denoted as 𝐾∗, 

is the one that minimises BIC. For further details and variations on variable selection processes and 

alternative information criteria please refer to Hyndman and Athanasopoulos (2021)5.  

When it comes to the Fourier terms, in both weekly and monthly models, the optimal choice of 𝐽 is 

𝐽 = 1. Therefore, in the above equation 𝐹𝑡(𝝆) = 𝜌1𝑠𝑖𝑛 (
2𝜋𝑡

𝑛
) + 𝜌2𝑐𝑜𝑠 (

2𝜋𝑡

𝑛
), where 𝜌1 ≡ 𝜌1,1 and 

𝜌2 ≡ 𝜌2,1. 

It is worth mentioning that this is by no means the only strategy available to identify the lag order of 

the model in terms of the weather variables.  Specifically, an alternative strategy for determining the 

dynamic specification of the weather variables is called “pre-whitening”. This process involves three 

steps, which need to be undertaken for each explanatory variable of the model. In the first step, an 

ARIMA(𝑝𝑥 , 𝑑𝑥 , 𝑞𝑥) model is fitted and the residuals are stored. Since the values of 𝑝, 𝑑 and 𝑞 are 

selected optimally using model information criteria (e.g. BIC or AIC), these residuals are 

— 
5 Hyndman and Athanasopoulos, Forecasting: Principles and Practice, Monash University, 2021. Hyndman and Athanasopoulos, 

2021, Forecasting: principles and practice, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3. Accessed on November 
29, 2021, 
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approximately white-noise. In the second step, the dependent variable, 𝑦𝑡, is filtered based on the 

estimated ARMA coefficients obtained in step 1. In the third and final step, the cross-correlation 

function (CCF) between the filtered values of 𝑦𝑡  and the residuals from step 1, are plotted in order to 

identify possible lags of the explanatory variable. This procedure is repeated for all explanatory 

variables.  

Some remarks are worth emphasising. Firstly, “pre-whitening” is primarily a visual tool that might 

facilitate preliminary identification of a set of possible dynamics of the model, depending on the 

complexity of the problem. As it is the case with all visual procedures, such a tool involves a certain 

degree of subjectivity. This can compromise transparency and replicability. Ultimately, the optimal 

specification is therefore determined using model information criteria and subsequent diagnostic 

tests on the residuals of the optimal model.  

Secondly, “pre-whitening” might work satisfactorily as a preliminary identification tool in simple 

problems involving few explanatory variables. However, in more complex problems, pre-whitening 

can dramatically distort the structure of variability and dependability among time series. That is, the 

properties of the original time series may no longer carry over to those of the respective pre-

whitened time series. 

For these reasons, we have not used “pre-whitening” in the model specification process.  

2.1.2 Estimation and Selection of ARMAX(p,q) 

In the second stage, holding 𝐾∗ fixed and retaining the corresponding regressors as part of the 

model, we estimate a set of ARMAX(p,q) models for different values of 𝑝 and 𝑞. Similarly, to the DL 

model, the optimal values of 𝑝 and 𝑞 are determined based on BIC. 

To illustrate, let  𝒙1𝑡
∗  and 𝒙2𝑡

∗  denote the optimal right-hand side variables, as determined in step 

2.1.1, and 𝜷1
∗ , 𝜷2

∗  denote the corresponding coefficients. In the second step, we determine the 

optimal values of 𝑝 and 𝑞 based on the following model: 

𝑦𝑡 = (𝒙1𝑡
∗ )′𝜷1

∗ + (𝒙2𝑡
∗ )′𝜷2

∗ + ∑ 𝛼𝜏
𝑝0
𝜏=1 𝑦𝑡−𝜏 + 𝜀𝑡 + ∑ 𝜃𝜏

𝑝4
𝜏=1 𝜀𝑡−𝜏,     

Thus, letting 𝜶∗ and 𝜽∗ denote the vectors of parameters corresponding to the optimal values of 𝑝 

and 𝑞, 𝜹∗ ≡ (𝜷1
∗′

, 𝜷2
∗′

, 𝜶∗′
, 𝜽∗′

)′ is estimated from the optimal model above. 

The aforementioned two-stage procedure has several advantages. Firstly, it is transparent and easily 

replicable because it relies solely on BIC minimisation, rather than on any visual tools. Secondly, it 

simplifies the complex task of dynamic specification in cases where there exists a large number of 

explanatory variables and a large choice of potential lags of these variables. Notably, the least-

squares estimates of the first-stage coefficients are consistent since the right-hand side variables of 

the DL model are strictly exogenous. Therefore, the model selection approach is statistically sound. 
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2.1.3 Diagnostic checking 

Finally, the optimal model is validated using a range of diagnostic checks, comprising of (i) an 

examination of the signs and statistical significance of the coefficients, (ii) tests for unit roots and 

serial correlation on the residuals, and (iii) stability of the AR and MA coefficients. 

2.2 Model results 

2.2.1 Forecasting accuracy of different specifications 

The training period used for the weekly and monthly models is July 1, 2006 – June 30, 2018, that is, it 

spans twelve years of data. The validation period is July 1, 2018 – June 30, 2021, spanning three 

years of data. Since our emphasis lies in comparing the forecasting accuracy of the various models, it 

is worth mentioning that we have computed in-sample forecasts for abstractions based on actual 

weather conditions during the period 2018-2021. In contrast, in 2017 Icon Water produced forecasts 

based on predicted weather conditions. This implies that the forecasting accuracy of all models 

presented here (including that of the daily model) would be higher than that reported by Icon Water, 

even if the benchmark model was identical.  

When testing forecasting accuracy of the model ex-post, we recommend isolating model uncertainty 

from uncertainty in predicting weather conditions. By producing forecasts of total abstractions based 

on actual weather conditions, the error in predicting weather is zero, and therefore any 

discrepancies between forecast and actual values of total abstractions can be attributed to model 

uncertainty. 

To determine the preferred time frequency of dam abstraction data, we have compared the 

forecasting accuracy of approaches using daily, weekly and monthly dam abstractions. To this end, 

we have used two different measures of forecasting accuracy, namely the Mean Absolute Percentage 

Error (MAPE) and the Root Mean Squared Percentage Error (RMSPE). These two measures are 

defined as follows: 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝐹𝑡 − 𝐴𝑡

𝐴𝑡
|

𝑛

𝑡=1

 

and  

𝑅𝑀𝑆𝑃𝐸 = √1

𝑛
∑ [100 × (

𝐹𝑡−𝐴𝑡

𝐴𝑡
)]

2
𝑛
𝑡=1 , 

where 𝐹𝑡 denotes the yearly sum of the daily\weekly\monthly forecasts; 𝐴𝑡 denotes the yearly sum of the 

daily actual abstractions, and 𝑛 = 3 because the validation period consists of three years. 6  

MAPE is based on the percentage of absolute forecast errors, and therefore it is relatively easy to 

— 
6 The benchmark ARIMAX model using daily observations has the same representation as that reported in Icon Water’s 2018-23 

price proposal to the ICRC. See Icon Water, 2018-23 Price Proposal Attachment 4 - Demand Forecasts, Table 2-4. 
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understand. For example, if the MAPE equals 3, then, on average, the annual forecast is off by 3%. 

Since our objective lies in comparing the forecasting accuracy of models with different time frequency, it is 

worth emphasising that both MAPE and RMSPE are computed based on the yearly sum of 

daily/weekly/monthly forecasts, whereas 𝐴𝑡 remains the same across models with different time 

frequency, subject to minor rounding errors for weekly data.7 This ensures that forecasting accuracy across 

models with different time frequency is comparable. 

In our stage 2 report, we compared the forecasting performance of different models by using RMSPE 

and MAPE. In its response to ICRC’s draft report, Icon Water questioned the validity of these 

measures for comparing models with different data frequency. 

Since the models that were selected for comparison analyse data with different time frequency 

(daily, weekly and monthly), we computed the above statistical measures based on the difference 

between the yearly forecast and the yearly actual values. This was done to ensure that the 

comparison among forecasting models with different time frequency is fair and objective. Therefore, 

we consider these measures remain valid for comparing the performance of different models. 

In particular, both forecasting accuracy measures make use of the term: 

𝐹𝑡 − 𝐴𝑡

𝐴𝑡
, 

where 𝐹𝑡 denotes the yearly forecast of dam abstractions, obtained by summing the forecast 

daily/weekly/monthly observations over year 𝑡, where 𝑡 spans three financial years, 2018/19, 

2019/20, 2020/21. Similarly, 𝐴𝑡 denotes the yearly actual daily dam abstractions. 

Note that the same value of 𝐴𝑡 is used to compute forecasting errors, regardless of the time 

frequency of the data. That is, whether a model is based on daily observations or weekly\monthly 

ones, the value of 𝐴𝑡 remains the same, subject to rounding errors. The only variable that changes is 

𝐹𝑡, as expected. 

Table 3 compares the impact on the MAPE and RMSPE for each data frequency when: 

• including additional weather variables using daily data; 

• using weekly and monthly data compared to using daily data, with and without the additional weather 

variables. 

In what follows, “Benchmark” refers to the model without extra weather variables (i.e. without the 
vector 𝒘𝑡), whereas “Augmented” refers to the model that includes the additional  𝒘𝑡.  

— 
7 We note that, unlike daily- and monthly-frequency data, with weekly data it is commonly the case that one week crosses over two 

financial years. As an example, consider the week starting on June 26 2010 and ending on July 2 2010. Then 5/7 of that week 
belongs to the financial year 2009-10 and 2/7 belongs to the next financial year. To account for that, when computing the actual 
data on releases (𝐴𝑡), the first five days of that week, should be attributed to 2009-2010 and the last two days should be 
attributed to 2010-11. When it comes to predicted values, 𝐹𝑡, we recommend that 5/7 of the value of total releases predicted 
that week should be attributed to 2009-10 and 2/7 should be attributed to 2010-11. 
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Table 3: Forecasting accuracy using daily, weekly and monthly data 

 Daily data Weekly data Monthly data 

 Benchmark  Augmented Benchmark Augmented Benchmark Augmented 

MAPE 3.80% 3.71% 1.59% 1.51% 2.38% 2.10% 

RMSPE 4.27% 4.19% 1.64% 1.59% 2.96% 2.67% 

Note: Benchmark – without additional weather variables, Augmented – with additional weather variables 

The results can be summarized as follows: 

• The optimal model based on weekly data outperforms the models based on daily and monthly data by 

a large margin. Moreover, there is some further improvement in the weekly model due to the use of 

additional weather variables.  

• With monthly data, forecasting accuracy improves compared to daily data, more so when extra 

weather variables are added into the model. However, the model based on weekly data outperforms 

the model with monthly data.  

The results indicate that using weekly data and adding extra variables, the annual forecast is off by 

1.5% roughly, on average. This contrasts with daily and monthly data, where the annual forecast is, 

on average, off by 3.7% and 2.1%, respectively.  

This is consistent with our findings from our stage 2 assessment where we noted that the model 

using weekly data performs better. Intuitively, one reason behind the higher forecasting accuracy 

observed with lower frequency data is that we make use of dynamic forecasting. Dynamic 

forecasting uses the forecast (as opposed to the actual) value of the lagged dependent variable to 

obtain the forecasts. Therefore, the forecast errors tend to compound over time. This means that 

with daily data, abstractions are predicted over hundreds of days ahead, resulting in less accurate 

forecasts.  

On the other hand, there is a limit as to how low the time frequency of the data may go, since the 

lower the time frequency, the smaller the sample size available for estimation, which can affect the 

accuracy of the forecasts. The modelling exercise shows that weekly data performs comparatively 

better than monthly data.  

On this basis, the following model results are based on using weekly observations of dam 

abstractions. 

2.2.2 ARIMA: optimal model results, with training period July 1, 2006 – June 30, 2018  

The following provides a description of the explanatory variables included in the optimal model. The 

results for the optimal model using weekly observations are reported below: 

• Dam release data for the previous week (this is the AR1 component) 

• Forecast error of dam releases for the previous week (MA1) 
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• Average value of daily maximum temperatures (degrees Celsius) during week t (temp0, temp3, 

temp4, where temp0 denotes average maximum temperature for the latest week, temp3 

denotes average maximum temperature for 3 weeks prior, and so on) 

• Square root of daily maximum temperature for 2 week prior (Temp_sq_lag2) 

• Average daily rainfall (mm) during a week (rain0, rain1, where rain0 denotes average daily 

rainfall for the latest week, and rain1 denotes average daily rainfall for 1 week prior) 

• Square root of rainfall data (rain1sqrt, rain2sqrt, rain3sqrt, where rain1sqrt denotes the square 

root of average daily rainfall for 1 week prior and so on) 

• Average daily evaporation during a week (evap0, evap1, where evap0 denotes average daily 

evaporation for the latest week, and evap1 denotes average daily evaporation for 1 week prior) 

• Icon water customer connections at the end of a week (cust) 

• number of days where daily temperature exceeded 30 °C during the previous week (temp_g30); 

• number of days where daily temperature exceeded 35 °C during the previous week (temp_g35); 

• number of days where rain exceeded 1 mm during the previous week (nudaysgeq1mm); 

• binary variables that take the value of 1 if the first day of a week time period 𝑡 belongs to summer 

and December, respectively, and zero otherwise (Summer, December) 

• The Fourier terms are computed based on the following formula: 

𝐹𝑡 = 𝜌1𝑠𝑖𝑛 (
2𝜋𝑡

52
) + 𝜌2𝑐𝑜𝑠 (

2𝜋𝑡

52
), 

where 𝜌1 and 𝜌2 have been defined earlier. The results show that the optimal model is an ARMAX 

model of order (1,1), i.e. both autoregressive AR and MA components are of order 1.8 

Overall, the estimated coefficients have the expected sign and most of them are statistically 

significant at the 5% level, except for the seasonal variables, namely Summer and December.  

The lack of statistical significance for the coefficient of December indicates that the conditional 

expected value of releases in December is no different from the rest of the summer (January and 

February). The coefficient of Summer is only marginally insignificant at the 10% level. Therefore, we 

consider it is safer to retain both variables into the model for the out-of-sample forecasts. 

— 
8 As discussed earlier, we found that the series 𝑦𝑡 is stationary, and therefore the ARIMAX(p,d,q) model reduces to an ARMAX(p,q) 

model. 
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Table 4: Co-efficient estimates for the final model specification using weekly observations  

Variables Coefficient p-value Sig. Variables Coefficient p-value Sig. 

AR1 0.78 0.00 *** Evap 46.38 0.00 *** 

MA1 -0.34 0.00 *** Evap1 31.03 0.00 *** 

Intercept 77.40 0.38  Temp_g30 10.91 0.00 *** 

Temp0 6.51 0.00 *** Temp_g35 28.89 0.00 *** 

Temp3 2.30 0.02 ** nudaysgeq1mm -14.88 0.00 *** 

Temp4 1.82 0.04 ** Cumx -0.06 0.00 *** 

Temp_sq_lag2 0.043 0.025 ** Summer 16.98 0.12  

Rain0 -3.78 0.00 *** December -15.62 0.17  

Rain1 11.15 0.00 *** Cust 0.003 0.00 *** 

Rain1sqrt -43.44 0.00 *** Sin -21.27 0.09 * 

Rain2sqrt -19.76 0.00 *** Cosin -102.67 0.00 *** 

Rain3sqrt -12.86     0.00 ***     

BIC 6858.31   AIC 6751.88   

Note: ‘*’, ‘**’ and ‘***’ indicate statistically significant coefficients using the 10%, 5% and 1% level of significance, 

respectively. Temp0 denotes the value of average maximum temperature at week t, Temp3 denotes the value of average 

maximum temperature at week t-3, and so one for the remaining variables. 

Further detailed model results and diagnostic checking are included in Appendix 1. 

2.3 Model implementation and developing dam abstraction forecasts 

To implement the model to generate out-of-sample forecasts of total dam abstractions, we need to 

obtain forecasts of water installation numbers and weather conditions for the next regulatory period. 

This section outlines our recommended approach to obtaining these key inputs and generating out-

of-sample forecasts of total dam abstractions. 

2.3.1 Customer projections 

When it comes to forecasts of water installations, it is important that these forecasts take into 

account the impact of Covid-19 and the resulting border closures on future customer growth for Icon 

Water. In particular, ignoring the impact of Covid-19 may lead to significantly higher forecasts of 

water installations than actual ones. For example, we note that ACT’s annual population forecasts 

during the period 2021-22 to 2030-31, updated by the Australian Government’s Centre for 

Population to account for Covid-19, are on average 2.3% lower than the previous forecasts made 

without taking into account the effect of Covid-19, as shown in Table 5.  
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Table 5 Population projections ACT under pre and post COVID scenarios 

Year Post-Covid 19 scenario Pre-Covid 19 scenario Percentage difference 

2021-22 431,400 436,000 -1.10% 

2022-23 432,800 440,900 -1.80% 

2023-24 435,800 445,700 -2.20% 

2024-25 439,900 450,500 -2.40% 

2025-26 444,000 455,200 -2.50% 

2026-27 448,000 459,800 -2.60% 

2027-28 452,000 464,200 -2.60% 

2028-29 455,900 468,500 -2.70% 

2029-30 459,700 472,700 -2.80% 

2030-31 463,400 476,700 -2.80% 

 

For this reason, we have computed forecasts of water installations using the following two-step 

procedure. In the first step, we used linear regression analysis to model the relationship between bi-

annual historical data of Icon Water’s water installations and ACT’s population during the period 

December 2006 to June 2021. In particular, the following polynomial of 3rd order was fitted: 

  

𝑐𝑢𝑠𝑡𝑡 = 𝛽0 + ∑ 𝛽𝑘

3

𝑘=1
(𝑝𝑜𝑝𝑡)𝑘 + 𝜀𝑡 ,   𝑡 = 1, … , 𝑇(= 30).                                   

The results are as follows: 

𝑐𝑢𝑠𝑡̂𝑡 =
−283136.4
(88267.7)

+
2.652

(0.639)
𝑝𝑜𝑝𝑡 +

−6.180 × 10−6

(1.560 × 10−6)
𝑝𝑜𝑝𝑡

2 +
5.930 × 10−12

(1.300 × 10−12)
𝑝𝑜𝑝𝑡

3  

𝑅2 = 0.9957 

The 3rd order polynomial fits the data better compared to a regression where 𝑝𝑜𝑝𝑡 is the only 

covariate. This is because there has been a recent decline in the rate of growth of ACT’s population 

due to Covid-19 and the resulting border closures. 

In the second stage, we imputed future water installations using the Covid-19-updated population 

forecasts for ACT, as listed in the above table. As an example, the value of water installations for 

2024 is obtained as follows: 

𝑐𝑢𝑠𝑡̂2024 = −283136.4 + 2.652 𝑝𝑜𝑝̂2024 + −6.180 × 10−6 (𝑝𝑜𝑝̂2024)2

+ 5.930 × 10−12 (𝑝𝑜𝑝̂2024)3  

where 𝑝𝑜𝑝̂2024 denotes the 2024 population forecast for ACT produced by the Australian 

Government’s Centre for Population.  
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We understand the ICRC is considering using the ACT Government’s population projections which 

accounts for future development activities in the ACT and is being updated to account for the effect 

of Covid-19. If these updated ACT Government population projections are not available for the next 

price investigation, we recommend using population forecasts for the ACT produced by the 

Australian Government’s Centre for Population.  

2.3.2 Weather data 

To generate forecast weather conditions, we have relied on the NARCLiM database, a multi-agency 

research project between the NSW and ACT governments and the Climate Change Research Centre 

at the University of NSW. 

The NARCLiM project has produced a suite of twelve regional climate projections for south-east 

Australia, including Canberra, spanning the range of likely future changes in climate. NARCLiM is 

explicitly designed to sample a large range of possible future climates, and provides daily and 

monthly forecasts of weather conditions that go as far as 2030 in their so-called “Near Future” setup 

and as far as 2079 in their “Far Future” set up.  

NARCLiM contains two types of simulated historical weather data: “raw” data and “bias-corrected” 

data. The latter account for differences between the data produced by the GCM\RCM models and 

the actual observed data. In other words, the “bias-correction procedure” is used to correct 

simulated data for a period in which observations are available, the so-called “control period”. Since 

for future projections, observations are not available, one cannot “correct” relative to true values but 

can adjust the values based on the correction established for the control period. Therefore, it is 

common to use the term “bias-adjustment” to distinguish between the procedure used for future 

periods with the bias-correction used for the control period.  

In our model, we already use observed weather data in the calibration period (as opposed e.g. to 

using NARCLiM simulated weather data) and thereby it makes sense to continue with “bias-adjusted” 

NARCLiM data, which take into account pre-existing trends. 

We have calculated NARCLiM adjustment factors by comparing average climate projections data 

from 2016 to 2035 against average historical bias-adjusted data from 1965 to 2021. The 20-year 

period spanning 2016 to 2035 has been selected. We consider that using projections over a long-time 

span (20 years) centred around regulatory period is reasonable and sound.9 

Because the bias-adjusted NARCLiM data already capture any pre-existing trends, the NARCLiM 

adjustment factors will be in addition to any pre-existing trends. Therefore, we do not consider any 

de-trending of historical data is required, as suggested by Icon Water. 

Instead of using adjustment factors, an alternative approach would be to rely on direct future climate 

projections produced by NARCLiM. However, the problem lies in that NARCLiM does not provide data 

for evaporation, which are used in the demand model, but only for evapotranspiration. On the other 

hand, long-term historical evapotranspiration data for ACT are not available; rather, only data on 

— 
9 Icon Water, Submission on ICRC’s Review of water and sewerage services demand forecasting methodology draft report, October 

2021, p.9. 
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evaporation are available. The existing adjustment approach enables using evapotranspiration-based 

adjustment factors to historical evaporation data in order to develop future climate scenario for 

evaporation. We also note that we are not able to incorporate direct NARCLiM climate projections 

for the forecast period, as there are 12 different scenarios, and it is difficult to know which scenario 

or scenarios will occur. An adjustment factor approach abstracts from this issue as it is focuses on the 

comparison between average climate conditions over a long term in the future (20 years) and over 

last 50 years. 

Approach to out-of-sample forecasting of total releases 

Our approach has been to take historical data from July 1965 to the latest date of actual data are 

divided into ‘x’ overlapping periods of equal length of ‘y’ years, where y is the length of the forecast 

period. For example, if actual data are available to 7 November 2021 and the forecasts are produced 

from 8 November 2021 to 30 June 2028 i.e. for 6 years and 8 months, historical data are split into 50 

overlapping periods of equal length of 6 years and 8 months.  

Subsequently, for any given NARCLiM climate scenario (out of a total of 12), we compute the 

adjustment factors and apply those to all 50 overlapping periods, thus producing 50 distinct sets of 

adjusted weather patterns, for each scenario. 

As noted above, NARCLiM adjustment factors are in addition to any pre-existing trends that may be 

present in the historical data since the data are bias-adjusted. Therefore, there is no need to detrend 

the actual historical data used in the demand model. We note that in the last price investigation that 

used SEACI adjustment factors, no de-trending of the historical data was done in the demand model. 

Next, out-of-sample forecasts of total abstractions are obtained for each one of the 50 sets of 

weather patterns, using dynamic forecasting based on the optimal ARMAX model. 

Finally, we compute a weighted average of those out-of-sample forecasts across all 50 sets of 

weather patterns. Taking a simple average would imply giving same weight to the forecasts based on 

NARCLiM-adjusted weather conditions in the 1960s and 1970s, and to the forecasts based on 

NARCLiM-adjusted weather conditions in the 2000s and 2010s. However, there would be pre-existing 

trends in the historical data. More recent data will better reflect that trend rather than the data that 

is further in the past. So, out-of-sample forecasts based on more recent weather conditions are likely 

to be more reflective of the future abstractions than predictions based on the distant past weather 

conditions.  

Icon Water had noted this issue of accounting for climate trends in historical data, but the alternative 

of de-trending is not appropriate, as discussed above. Therefore, herewith we propose a simple and 

transparent method that assigns more importance (i.e. a larger weight) to forecasts that are 

conditional on more recent weather patterns, and less importance (smaller weight) to those 

conditional on earlier weather patterns. To achieve that, we multiply the forecast values of releases 

corresponding to weather pattern 𝜏 = 1, … , 𝑛(= 50), by 𝜏 [𝑛(𝑛 + 1)/2]⁄ , where 𝜏 = 1 corresponds 

to the weather pattern observed for the earliest period of length 6 years and 8 months, 𝜏 = 2 

corresponds to the weather pattern observed for the second earliest period of length 6 years and 8 
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months, and so on. The benefits of using a weighted average are illustrated in Appendix 1. The charts 

show that the weighted average approach better captures some of the upwards peaks of actual 

releases compared with the simple average. 

This procedure is repeated across all 12 NARCLiM climate scenarios. That is, in total we produce 600 

forecasts, which we average in batches of 50, giving rise to 12 different ‘forecast averages’, one for 

each NARCLiM climate scenario.  

We also considered adopting a simpler approach which applied an adjustment factor to the average 

of the 50-year historical dataset for each scenario, thus only producing 12 forecasts in total. 

However, this resulted in overwhelmingly smoothing out the extreme variations in weather, which 

can potentially result in material under-forecasting.  

Computing NARCLiM Climate Adjustment Factors  

The following outlines how we have computed the NARCLiM adjustment factors and developed 

climate (temperature, rainfall and evaporation) forecasts. Steps 1a-1c outline how we computed 

season-specific correction factors:  

1a. We compute average monthly climate observations by averaging across daily values within each 

of the 12 months, during the period 1965 – 2005. We take an average of the monthly averages across 

three-month periods, corresponding to each of the four seasons of the year, i.e. summer, autumn, 

winter and spring. 

1b. We repeat step 1a, this time by averaging across daily climate values during the period 1965 – 

2021.  

1c. The difference between the season-specific climate values obtained in steps 1a and 1b is used as 

a season-specific correction factor that accounts for the fact that the NARCLiM baseline climate data 

end in 2005 rather than 2021 and therefore these do not account for any climate change 

developments during the past 16 years (i.e. 2006 to 2021). 

2. We compute monthly-specific means of climate, by averaging monthly climate historical data 

produced by NARCLiM (bias-adjusted) across a period of 50 years, i.e. during 1965 – 2005. 

Subsequently, we take an average of the monthly averages over three-month periods, corresponding 

to each of the four seasons of the year, i.e. summer, autumn, winter and spring. 

Subsequently, we add the correction factor obtained in steps 1a – 1c onto the season-specific values 

obtained in step 2. 

3. For each of the 12 future climate scenarios available by NARCLiM, we compute monthly-specific 

means of predicted climate, by averaging monthly climate projections produced by NARCLiM across a 

period of 20 years; namely during 2016 – 2035. 

Subsequently, we take an average of the monthly averages over three-month periods, corresponding 

to each of the four seasons of the year, i.e. summer, autumn, winter and spring.  
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4. The difference in the season-specific values obtained in step 3 and step 2 is the NARCLiM seasonal 

adjustments factors.  

5. To obtain the climate forecasts we adjust each one of the 50 climate scenarios using the NARCLiM 

seasonal adjustment factors computed in step 4. 

Data adjustments for weekly data model 

As noted throughout our report, we have made some adjustments to account for the weekly data in 

the model. These adjustments include: 

• Unlike with daily and monthly data, with weekly data it is common that one week will cross over 

two financial years. As an example, consider a week starting on June 26 2010 and ending on July 

2 2010. Then 5/7 of that week belongs to the financial year 2009-10 and 2/7 belongs to the next 

financial year. To account for that, when it comes to the actual data on releases, the first five 

days of that week, should be attributed to 2009-2010 and the last two days should be attributed 

to 2010-11. When it comes to predicted values, we have attributed 5/7 of the value of total 

releases predicted that week to 2009-10 and 2/7 to 2010-11. 

• To account for weeks being partially in Summer and December, in the model we have used the 
first day of each time period t in order to classify whether an observation belongs to summer 
and/or December.  
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Appendix 1. Detailed model results 

A1.1. Unit root test on 𝑦𝑡 for the weekly time series 

The output below shows results on the Dickey-Fuller unit root test on the dependent variable, 𝑦𝑡. 

The null hypothesis is that the 𝑦𝑡 series has a unit root, i.e. it exhibits a stochastic trend. The results 

show that the null hypothesis is rejected at the 1% level of significance. At the same time, the 

coefficient of the deterministic trend is statistically insignificant. This confirms that no differencing of 

𝑦𝑡 is required and thus an ARMA model is sufficient.   

 

  

                                                                              

       _cons     122.2256   19.32751     6.32   0.000     84.27067    160.1806

      _trend     .0243724    .023748     1.03   0.305    -.0222635    .0710084

         L1.    -.1443491   .0207622    -6.95   0.000    -.1851214   -.1035767

    releases  

                                                                              

D.releases          Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

MacKinnon approximate p-value for Z(t) = 0.0000

                                                                              

 Z(t)             -6.952            -3.960            -3.410            -3.120

                                                                              

               Statistic           Value             Value             Value

                  Test         1% Critical       5% Critical      10% Critical

                                          Interpolated Dickey-Fuller          

Dickey-Fuller test for unit root                   Number of obs   =       626
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A1.2. Stata model final results for the optimal weekly model 

 

 

 

                                                                                

        /sigma     52.51114   1.095994    47.91   0.000     50.36303    54.65925

                                                                                

           L1.    -.3393397   .0583852    -5.81   0.000    -.4537725   -.2249069

            ma  

                

           L1.     .7828671   .0331385    23.62   0.000     .7179169    .8478174

            ar  

ARMA            

                                                                                

         _cons     77.40742   87.97572     0.88   0.379    -95.02183    249.8367

         cosin    -102.6682   22.67398    -4.53   0.000    -147.1084   -58.22803

           sin    -21.26738   12.54978    -1.69   0.090    -45.86451    3.329738

          cust     .0025903   .0005224     4.96   0.000     .0015665    .0036141

      december    -15.61618   11.40352    -1.37   0.171    -37.96667    6.734304

        summer      16.9807    10.9494     1.55   0.121    -4.479728    38.44112

          cumx    -.0561724   .0052858   -10.63   0.000    -.0665323   -.0458124

   nudaygeq1mm    -14.88511   2.788365    -5.34   0.000    -20.35021   -9.420017

      temp_g35     28.89207   3.306967     8.74   0.000     22.41053     35.3736

      temp_g30      10.9107   2.365901     4.61   0.000     6.273622    15.54778

     evap_lag1     31.03152   3.410243     9.10   0.000     24.34757    37.71547

          evap     46.38282   3.433152    13.51   0.000     39.65397    53.11168

rain_sqrt_lag3     -12.8602    3.22286    -3.99   0.000    -19.17689   -6.543513

rain_sqrt_lag2    -19.75853    2.94018    -6.72   0.000    -25.52117   -13.99588

rain_sqrt_lag1    -43.44157   7.037278    -6.17   0.000    -57.23438   -29.64875

     rain_lag1     11.15212   2.132769     5.23   0.000      6.97197    15.33227

          rain    -3.789757   .8868176    -4.27   0.000    -5.527887   -2.051626

  temp_sq_lag2     .0434932   .0194666     2.23   0.025     .0053394     .081647

     temp_lag4     1.822711   .9133514     2.00   0.046     .0325754    3.612847

     temp_lag3      2.29675   .9757859     2.35   0.019     .3842451    4.209255

          temp      6.50867    1.51816     4.29   0.000     3.533132    9.484209

releases        

                                                                                

      releases        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                 OPG

                                                                                

Log likelihood = -3351.938                      Prob > chi2       =     0.0000

                                                Wald chi2(22)     =    5498.70

Sample:  5 - 627                                Number of obs     =        623

ARIMA regression

                                                                             

           .          623          .  -3351.938      24   6751.876   6858.305

                                                                             

       Model            N   ll(null)  ll(model)      df        AIC        BIC

                                                                             

Akaike's information criterion and Bayesian information criterion
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A1.3. Results for the Ljung-Box test for white noise of the ARMA 

residuals of the optimal weekly model 

The output below report results on the Ljung-Box test for white nose of the ARMA residuals. The null 

hypothesis is that the residuals are white noise, i.e. serially uncorrelated. The null hypothesis is not 

rejected at the 1% level of significance. This indicates that the model is well-specified. 

 

A1.4. Stability condition after estimating the parameters of an ARMA 

model using the optimal weekly model 

The diagram below show that the inverse of the root of the AR polynomial lies inside the unit circle. 

Therefore, the process is stationary, invertible and has an infinite-order MA representation. Moreover, 

since the inverse of the MA root lies inside the unit circle, the estimated ARMA is invertible. 

 

A1.5. Partial Autocorrelation Function (PAC) plot on the residuals of the 

optimal weekly model 

The following figure shows the plot of the partial autocorrelation function for the optimal ARMA 

residuals. The ACF function provides information about the degree of autocorrelation in the 

residuals. In a well-specified model, the residuals should be white noise. All partial autocorrelations 

lie within the 99% confidence interval which indicates no presence of serial correlation in the errors. 

 Prob > chi2(40)           =     0.6636

 Portmanteau (Q) statistic =    35.7130

                                       

Portmanteau test for white noise
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A1.6. In-sample forecasts for the optimal weekly model during July 2018 

to June 2021  
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A1.7. Stata model final results for the weekly “benchmark” model 

       confidence interval is truncated at zero.

Note: The test of the variance against zero is one sided, and the two-sided

                                                                                

        /sigma     56.83547   1.161484    48.93   0.000       54.559    59.11194

                                                                                

           L1.     -.337904   .0598295    -5.65   0.000    -.4551677   -.2206402

            ma  

                

           L1.     .7718127   .0367736    20.99   0.000     .6997377    .8438877

            ar  

ARMA            

                                                                                

         _cons    -107.1437   88.55245    -1.21   0.226    -280.7034    66.41587

           cos    -179.8311   22.97179    -7.83   0.000     -224.855   -134.8072

           sin    -30.18435   13.29059    -2.27   0.023    -56.23343   -4.135258

          cust     .0025418   .0005462     4.65   0.000     .0014713    .0036122

      december     -26.9099   12.35946    -2.18   0.029      -51.134   -2.685791

        summer     34.29999   12.19688     2.81   0.005     10.39455    58.20544

          cumx    -.0620667   .0056215   -11.04   0.000    -.0730846   -.0510488

     evap_lag1     34.68955   3.900997     8.89   0.000     27.04373    42.33536

          evap     58.47382   3.353479    17.44   0.000     51.90112    65.04652

rain_sqrt_lag3    -10.91119   3.476292    -3.14   0.002    -17.72459   -4.097778

rain_sqrt_lag2    -17.19505   3.137562    -5.48   0.000    -23.34456   -11.04554

rain_sqrt_lag1    -33.98765   7.544195    -4.51   0.000      -48.774    -19.2013

     rain_lag1     9.694658   2.300161     4.21   0.000     5.186424    14.20289

          rain    -6.627188   .7462497    -8.88   0.000    -8.089811   -5.164566

  temp_sq_lag2     .0647735   .0207201     3.13   0.002     .0241628    .1053842

     temp_lag4     1.465535   .9963961     1.47   0.141    -.4873651    3.418436

     temp_lag3     1.844614   1.007932     1.83   0.067    -.1308973    3.820125

          temp     12.98256    1.08666    11.95   0.000     10.85275    15.11237

releases        

                                                                                

      releases   Coefficient  std. err.      z    P>|z|     [95% conf. interval]

                                 OPG

                                                                                

Log likelihood = -3401.209                      Prob > chi2       =     0.0000

                                                Wald chi2(19)     =    5308.30

Sample: 5 thru 627                              Number of obs     =        623

ARIMA regression
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A1.8. Stata model final results for the monthly “benchmark” model 

 

 

      confidence interval is truncated at zero.

Note: The test of the variance against zero is one sided, and the two-sided

                                                                                

        /sigma     244.3114   15.31207    15.96   0.000     214.3003    274.3225

                                                                                

           L1.    -.3444493   .4794543    -0.72   0.472    -1.284162    .5952637

            ma  

                

           L1.     .5137539   .4326061     1.19   0.235    -.3341385    1.361646

            ar  

ARMA            

                                                                                

         _cons     814.2352   11338.88     0.07   0.943    -21409.56    23038.03

         cosin     -820.163   269.4376    -3.04   0.002    -1348.251   -292.0749

           sin    -589.4599   269.7376    -2.19   0.029    -1118.136   -60.78382

          cust     .0100964   .0028176     3.58   0.000     .0045739    .0156188

      december     238.6634   130.1335     1.83   0.067    -16.39359    493.7203

        summer    -19.36943   146.9886    -0.13   0.895    -307.4618     268.723

          cumx    -.0360546   .0070121    -5.14   0.000     -.049798   -.0223112

rain_sqrt_lag1    -165.8066   77.34188    -2.14   0.032    -317.3939   -14.21926

evap_sqrt_lag1    -1694.999   2051.057    -0.83   0.409    -5714.997    2324.999

  evap_sq_lag1     -52.1682   40.00107    -1.30   0.192    -130.5689    26.23246

     evap_lag1     889.9162   843.6173     1.05   0.291    -763.5434    2543.376

          evap     299.6096     76.354     3.92   0.000     149.9585    449.2607

temp_sqrt_lag3    -1855.413   6341.811    -0.29   0.770    -14285.13    10574.31

temp_sqrt_lag2     283.3024   172.0361     1.65   0.100    -53.88215    620.4869

  temp_sq_lag3    -4.639308   8.456302    -0.55   0.583    -21.21335    11.93474

     temp_lag3     398.8317   1056.678     0.38   0.706     -1672.22    2469.883

          temp     125.3794   25.06568     5.00   0.000     76.25158    174.5073

releases        

                                                                                

      releases   Coefficient  std. err.      z    P>|z|     [95% conf. interval]

                                 OPG

                                                                                

Log likelihood = -975.3926                      Prob > chi2       =     0.0000

                                                Wald chi2(18)     =    1181.23

Sample: 4 thru 144                              Number of obs     =        141

ARIMA regression
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A1.9. Stata model final results for the monthly “augmented” model 

 

 

      confidence interval is truncated at zero.

Note: The test of the variance against zero is one sided, and the two-sided

                                                                                

        /sigma     223.0883   13.99832    15.94   0.000     195.6521    250.5245

                                                                                

           L1.    -.4581987   .3161696    -1.45   0.147     -1.07788    .1614823

            ma  

                

           L1.     .6596953   .2563044     2.57   0.010     .1573479    1.162043

            ar  

ARMA            

                                                                                

         _cons     13086.91   11857.76     1.10   0.270    -10153.87    36327.69

         cosin    -432.2852    236.975    -1.82   0.068    -896.7476    32.17721

           sin     -594.369    268.964    -2.21   0.027    -1121.529   -67.20928

          cust     .0102896   .0030999     3.32   0.001      .004214    .0163652

      december     358.5707   130.6573     2.74   0.006     102.4872    614.6543

        summer    -140.2582   143.1579    -0.98   0.327    -420.8425    140.3261

          cumx    -.0266499   .0076214    -3.50   0.000    -.0415876   -.0117122

   nudaynorain     24.48947   9.868906     2.48   0.013     5.146766    43.83217

      temp_g35     60.09848   16.38072     3.67   0.000     27.99285    92.20411

rain_sqrt_lag1    -182.2828    66.5167    -2.74   0.006    -312.6531   -51.91244

evap_sqrt_lag1    -2913.708   2084.202    -1.40   0.162    -6998.669    1171.253

  evap_sq_lag1    -71.99616   42.51765    -1.69   0.090    -155.3292    11.33689

     evap_lag1     1409.659   870.5343     1.62   0.105    -296.5573    3115.875

          evap      203.646   75.21334     2.71   0.007     56.23055    351.0614

temp_sqrt_lag3    -8605.923    6520.25    -1.32   0.187    -21385.38    4173.532

temp_sqrt_lag2     303.4289   142.2349     2.13   0.033     24.65357    582.2042

  temp_sq_lag3    -12.84544   8.290071    -1.55   0.121    -29.09368    3.402798

     temp_lag3     1507.289   1069.343     1.41   0.159    -588.5848    3603.162

          temp     90.30256   25.14893     3.59   0.000     41.01156    139.5936

releases        

                                                                                

      releases   Coefficient  std. err.      z    P>|z|     [95% conf. interval]

                                 OPG

                                                                                

Log likelihood = -962.5973                      Prob > chi2       =     0.0000

                                                Wald chi2(20)     =    1489.06

Sample: 4 thru 144                              Number of obs     =        141

ARIMA regression
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A1.10. Stata model results for the daily “benchmark” model 
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A1.11. Stata model results for the daily “augmented” model 
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A1.12. Weekly dam abstraction forecasts – comparison of simple average 

vs weighted approach to climate data 

The charts below compare weekly dam abstraction forecasts under a simple average approach 

compared with the weighted average approach for a sample of the NARCLiM climate scenarios  

Figure 2: Weekly dam abstraction forecasts from July 2006 to June 2028 – comparison of simple 
average vs weighted average for a sample of NARCLiM climate scenarios 
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